Understanding bacterial iron transport

M. Baaden and M. S. P. Sansom

Oxford University, South Parks Road, Oxford OX1 3QU United Kingdom

We present preliminary results of molecular dynamics (MD) simulations in a fully solvated lipid bilayer to probe the mechanism of bacterial iron transport.

Gram negative bacteria provide themselves with essential iron using a unique class of outer membrane proteins. The crystal structures of three members of this class of porin-like proteins, FhuA, FecA and FepA from *E. coli*, have recently been determined. [1] These bacterial transporters formed from a 22-stranded beta-barrel pose an intriguing challenge to our current understanding of the Fe³⁺ transfer mechanism as the protein barrel interior is occluded by a globular N-terminal domain, the "cork" (~150 aminoacid residues). Whether the cork "unplugs" during transport or undergoes a conformational change remains unknown.

A detailed atomic picture emerges from our MD simulations (Figure above. Left: A snapshot of the simulation system. FepA (white) embedded in a DMPC bilayer. Right : The enterobactin siderophore-iron complex, as transported by the FepA protein.), providing insights into stable *vs* mobile parts of the structure and possible pathways of transport.

This work is supported by an EC Marie Curie Fellowship (Project reference QLK2 CT 2000-51210).

[1] S. K. Buchanan *et al.*, *Nature Struct. Biol.* 6, 56 (1999); A. D. Ferguson *et al.*, *Science* 282, 2215 (1998);
K. P. Locher *et al.*, *Cell* 95, 771 (1998); A. D. Ferguson *et al.*, *Science* 295, 1715 (2002).