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e Bacterial homologues of eukaryotic pentameric ligand-gated ion channels (LGICs, Fig.1 & 2) [1,3]

e Structural and functional models of signal transduction in the nervous system. W 2.4x107 o
O
e Two crystal structures in distinct conformations. B
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—, (AT T e Gloeobacter violaceus (GLIC) [1] is gated by protons .
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%E’ _, L S < e Open pore Tab. 1: Propofol activity on wild Fig. 7: Propofol movements in its cavity. Mutants T255A and V2
type and GLIC mutants. which seems correlated with the contacts to the M2 helices.

e MD simulations: protein is stable on a 20 ns timescale [1] (Fig. 2) e We crystallized G.A. bound to GLIC (Fig.1) [5]

e M2 helices that form the wall of the pore fluctuate around an open (Fig. 2 & 4) water-filled pore (Fig. 6a). 20 e MD simulations:
S e contacts between G.A. and M2 helices correlated with activity

Fig. 1: Side view of GLIC in
cartoon representation
(anesthetics shown as

spheres). 30 | (Tab. 1 & Fig. 7)
e desflurane can enter a connection tunnel between 2 adjacent
20 |- ’ subunits (Fig. 8)
| e Related work by Klein et al. [0].:
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i escale E ot > Fig 8. Desflurane movements in its cavity. Left:  multiple binding sites including pore
Fig. 3: Our one microsecond long simulation lead to the i ([r)eej fclzt:cr)asZZsp)oggcl);rigCg;r?sleaS }Jﬁlci;tglr? ;?tlrt\Z (I:iag\g:\}:jcce:\fﬁ; * Related work by Murail et al. (private communication):
closure of 2 subunits by a sequential «domino mecanism» 2fr. | distance. Rig.ht: tunnel (orange) that links two adjacent ethanol binding to GlyRa receptor bears some similarities
| - subunits (yellow and purple). ]
Fig. 2: M2 helices fluctuations .ﬁ' s _ | - ubunits (yellow purple) To the best of our knowledge, our study is the only one supported by
during MD simulation. Fig. 4: Pore radius as a fonction of the pore a crystal structure.
distance.
Conclusion - Perspectives
Many questions concerning GLIC still remain unsolved.
¢ |on selectivity
¢ jon permeation
e GLIC undergoes large motion at neutral pH e protonation state of all key residues.
¢ 1 us MD simulation of the channel’s pH stimulated gating mechanism [2] e classical pKa calculations yield contradictory results and original approaches will be necessary.

e Open channel equilibrated instantly set to
neutral pH (Fig. 5)

e Simulations show:
e channel closure rapidly takes place at the
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e Gating mechanism
e observe the full transition
¢ twist movement central in the process

Energy landscape

level of the hydrophobic furrow -;:;‘** e which interactions initiate this movement?
e guaternary twist increases progressively 7, 4 e how do forces propagate across the structure ?
o fwo-step domino-like mechanism ¥ &P
suggested by observed transitions (Fig. 3) <. * Anesthesia.
open dlosed conformations e channel dehydratation (Fig. 6b) it e crystal structure of general anesthetics bound to GLIC provides important insight
Fig. 5: Energy landscape as a function e cation reservoirs at specific places (Fig. 6¢ iy L _ e how do these small molecules operate?
of the conformations (that are relative P P (Fig. 6¢) Fig 6: Pore hydratation at pH=4.6 and pH=7.0. e how is the channel inactivated? P
to pH). '

e why are some molecules more efficient than others?
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